

December 10, 2011

Primary Ingredients

Basic elements of concrete; without one of these you don't have concrete.

· Aggregates are structural filler

• Cement + Water = Paste (binder)

Most often overlooked or underestimated

Aggregates and Workability

Workability influenced by:

• Particle shape

- Particle roughness
- Gradation/packing
- Aggregate to paste ratio
- Surface area

Fine Aggregates

- Sands have greater influence on workability, paste content and water demand than coarse aggregates
- Use more coarse sands (#8, #16, #30 sieve) – Finer sands increase trapped air (#50, #100)
 - Excessive fines (smaller than #100) can cause loss of workability and a potential for higher w/c ratios to compensate

Recycled Aggregates

Crushed bottles

- Crushed window glass
- Tempered glass
- Scrap stained glass
- Crushed porcelain (sinks, tubs, toilets)
- Crushed concrete
- Crushed granite/marble scrap

- Variegated, hand-pressed or solid
- Always has pinholes and air voids

- Different brands have different colors
- Portland most common, but other types are used (calcium sulfo-aluminate CSA cement)
- Different cement chemistry has different rules

CC

- Use sparingly when designing mix
- Use precisely when making concrete
- Use liberally during curing
 - The less water used to make the concrete, the better the concrete.

Water

Water to Cement Ratio (w/c)

- Determines strength and durability of concrete
- Lower w/c ratios yield richer colors; higher w/c ratios yield paler colors
- High w/c ratio (more water) results in weak concrete
 - This is because diluted cement paste is weaker and more susceptible to cracking and shrinkage

Secondary Ingredients Modify only the cement paste Influence fresh and hardened characteristics

 Include metakaolin, silica fume, fly ash, slag, glass and vitreous calcium aluminosilicates (VCAS)

8

Reasons for using pozzolans

- Improve strength (long term)
- Improve workability (some pozzolans)
- Improved microparticle packing
- Reduce porosity
- Reduce bleedwater
- Reduce or eliminate ASR & efflorescence
- Make concrete "greener"
- · Cement replacement or addition

Factors affecting pozzolans:

- Particle shape
- Particle size

- · Chemical makeup
- Reactivity
- Dosage
- · Curing conditions
- Temperature

Metakaolin

Benefits

- White (or very nearly white)
- Very high reactivity (similar to silica fume)
- Enhances paste stability

Cons

- Decreases workability
- · Manufactured using mined kaolin clay
- · Has carbon footprint
- Expensive

	Ту	oical Dosages	
 Metak 	aolin	10% to 20%	
VCAS		10% to 25%	
Bottle	Pozz	10% to 25%	
 Fly as 	h		
- Cla	ss C	15% to 40%	
– Cla	ss F	15% to 25%	
 Slag 		30% to 45%	
Silica	fume	5% to 10%	

- Not all fibers add strength or toughness
- Fibers ONLY provide strength benefits AFTER the concrete cracks
- Fibers do provide crack control
 - If your client can't see a crack, is it really there?

- Glass fiber reinforced concrete (GFRC)
- Large volume of AR glass fibers (3 lbs in 100 lbs of GFRC)
- Ordinary concrete uses 1-5 lbs in 4000 lbs of concrete
- Mix designed tailored for fiber volume
- Only large volumes of structural fibers can replace light steel reinforcing

Chemical Admixtures

- Water reducers/Superplasticizers
- Accelerators

- Retarders
- Air entrainers
- Shrinkage reducers
- Corrosion inhibitors
- Defoaming agents

- Low range (5% 12% reduction)
- Mid range (8% 15% reduction)
- Best for flatwork, troweled concrete
- High range (12% 40% reduction) - a.k.a. superplasticizers

Water Reducing Admixtures

Can be used either to:

- Reduce w/c ratio to maintain a given slump, or
- · Increase slump for a given w/c ratio

Superplasticizers

- Use for highly workable concrete with low w/c ratio
- Typically used with precast concrete or when troweling won't be performed
 - can make concrete sticky
 - -length of time it remains effective can vary
 - influence on set time can vary

Polycarboxylates

- Powerful superplasticizers
- Often used for self consolidating concrete (SCC), where very high flowability and long duration are desired
- · Concrete very sticky, difficult to trowel
- · SCC often also uses viscosity modifiers

Important points:

- · Use well-graded aggregate and coarse sands if possible
- · Measure water precisely
- Use a low w/c ratio (remember the Kool-Aid and snowballs)
- Keep concrete wet while curing (remember the tomato seedlings)
- Use pozzolans to reduce ASR & efflorescence, but be aware they can reduce early strength and affect workability

Summary

Fibers do not replace steel for primary reinforcing, except in GFRC
Use superplasticizers to increase workability without increasing w/c ratio (remember the static cling cat)

More Resources More information about mix design: • "Precast Mix Design 101" Mix calculator: • "Precast Mix Calculator" Find these self-study courses in our Online Store.

Contact: info@concretecountertopinstitute.com or 888-386-7711